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We consider a prominent feature of hierarchical nonlinear (‘‘complex’’) systems:
persistent recurrence of abrupt overall changes, called here ‘‘critical transitions.’’
Motivated by the earthquake prediction problem, we formulate a model that
uses heuristic constraints taken from the dynamics of seismicity. Our conclu-
sions, though, may apply to hierarchical systems that arise in other areas.We use
the Boolean delay equation (BDE) framework to model the dynamics of collid-
ing cascades, in which a direct cascade of loading interacts with an inverse
cascade of failures. The elementary interactions of elements in the system are
replaced by their integral effect, represented by the delayed switching of an
element’s state.The present paper is the first of two on the BDE approach to
modeling seismicity. Its major results are the following: (i) A model that
implements the approach. (ii) Simulating three basic types of seismic regime. (iii)
A study of regime switching in a parameter space of the loading and healing
rates. The second paper focuses on the earthquake prediction problem.

KEY WORDS: Cellular automata; colliding cascades; delay equations; hierar-
chical modeling; seismic regimes.



1. BACKGROUND AND MOTIVATION

1.1. Colliding-Cascade (CC) Model

The CC model (1, 2) synthesizes four phenomena that play an important role
in many complex systems: (i) hierarchical structure; (ii) external loading (or
driving); (iii) ability of the system’s elements to fail (break down) under the
load, causing redistribution of the load and strength throughout the
system; and (iv) the element’s ability to heal.

We use in our model a ternary hierarchical structure, shown in Fig. 1.
The load is applied at the top of the hierarchy and transferred downwards,
forming a direct cascade of loading. Failures are initiated at the lowest level
of the hierarchy, and gradually propagate upwards, forming an inverse
cascade of failures, which is followed by healing. The interaction of direct
and inverse cascades establishes the dynamics of the system: loading
triggers the failures, while failures redistribute and release the load.

In the first version of the CC model (1, 2) elementary interactions
between its elements have been simulated by a system of ordinary differen-
tial equations (ODEs). This version has reproduced several major features
of seismicity, including four types of premonitory seismicity patterns.
Premonitory increase of the earthquake correlation range, introduced in
ref. 2, was later confirmed by analysis of observations. (3, 4)

The present version of the model takes advantage of the BDE frame-
work developed by M. Ghil and associates. (5–7) This paper is focused on
design of the model and on multiple regimes of synthetic seismicity, while
the study’s second part (8) focuses on the earthquake prediction problem.

The paper proceeds as follows. The remainder of the present section
provides some background on BDEs and the model’s heuristic constraints.
The model is formulated in Section 2 and its multiple seismic regimes are
described in Section 3. The physics of what determines the prevalence of
one regime or another is outlined in Section 4 and the results are further
discussed in Section 5.

1.2. Boolean Delay Equations (BDEs)

BDEs represent a novel modeling language especially tailored for the
mathematical formulation of conceptual models of systems that exhibit
threshold behavior, multiple feedbacks and distinct time delays. (5, 6) BDEs
are semi-discrete dynamical systems, where the variables are discrete—typi-
cally Boolean, i.e., taking the values 0 (‘‘off ’’) or 1 (‘‘on’’) only—while time
is allowed to be continuous. As such they occupy the previously ‘‘missing
corner’’ in the rhomboid of Fig. 2, where dynamical systems are classified
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Fig. 1. Structure of the colliding cascade (CC) model with branching number 3. (a) Three
highest levels of the hierarchy. (b) Interaction with the nearest neighbors.

according to whether their time (t) and state variables (x) are continuous or
discrete.

Systems in which both the variables and time are continuous are called
flows (9) (upper corner in the rhomboid of Fig. 2). Vector fields, ODEs and
partial differential equations (PDEs), functional and delay-differential
equations (FDEs and DDEs) and stochastic differential equations (SDEs)
belong to this category. Systems with continuous variables and discrete
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Fig. 2. The place of BDEs within dynamical system theory. Note the links: The discretiza-
tion of t can be achieved by the Poincaré map (P-map) or a time-one map, leading from Flows
to Maps. The opposite connection is achieved by suspension. To go from Maps to Automata
we use the discretization of x. Interpolating and smoothing can lead in the opposite direction.
Similar connections lead from BDEs to Automata and to Flows, respectively. See text for
details.

time (middle left corner) are known as maps (10) and include diffeo-
morphisms, as well as ordinary and partial difference equations (OgEs
and PgEs). Automata (lower corner) have both time and variables that are
discrete: cellular automata (CAs) and all Turing machines (including real-
world computers) are part of this group. (11, 12) BDEs and their predecessors,
kinetic and conservative logic, complete the rhomboid in the figure and
occupy the remaining middle right corner.

The formulation of BDEs was originally inspired by advances in
theoretical biology, following Jacob and Monod’s (13) discovery of on-off
interactions between genes, which had prompted the formulation of
‘‘kinetic logic’’ (14, 15) and Boolean regulatory networks. (16) The BDE
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approach was first applied (17–19) to help interpret paleoclimate records; (20, 21)

it was later extended to a broader climate modeling context. (7, 22–24) As the
study of complex systems garners increasing attention and is applied to
diverse areas—from economics to the evolution of civilizations, passing
through physics—related Boolean and other discrete models are being
explored more and more. (11, 25, 26)

Our BDE model uses only integer delays. In this sense it is simpler
than those previously explored. (5–7) On the other hand, the model studied
here has a stochastic component, which has not been studied so far.

1.3. Heuristic Constraints

In its application to seismicity, the model’s hierarchical structure
represents a fault network, loading imitates the impact of tectonic forces,
and failures imitate earthquakes. Heuristic constraints include the major
regularities in the observed dynamics of seismicity: (27–30) (i) the seismic
cycle; (ii) intermittency in the seismic regime; (iii) the size distribution of
earthquakes, usually called the Gutenberg-Richter relation; (iv) clustering
of earthquakes in space and time; (v) long-range correlations in earthquake
occurrence; and (vi) a variety of seismicity patterns premonitory to a strong
earthquake. (27, 30–32) Here we demonstrate that the model-generated seismi-
city satisfies the first four constraints. The last two are studied in our
study’s second part. (8)

2. THE MODEL

Lattice models of interacting-element systems are widely applied for
modeling seismicity, starting with the pioneering works of Burridge and
Knopoff, (33) Allegre et al., (34) Bak et al. (35) and Narkunskaya and Shnirman. (36)

The theoretical background for such modeling and its results so far are
summarized in refs. 29, 31, 32, and 37–42. The predictability of such
systems is discussed in refs. 32, 38, and 40. The present study is close in
spirit to the modeling described in refs. 34 and 42–48.

In the BDE framework, we replace the detailed interactions between
elements by their integral effects. These effects are represented by the
delayed switches of an element from one state to another: unloaded vs.
loaded and intact vs. failed.

2.1. Outline

(i) The model acts on a ternary graph of depth L (Fig. 1(a)). Each
element is a parent of three children that are each other’s siblings. An
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element is connected to and interacts with its six nearest neighbours: the
parent, two siblings, and three children. The top element has neither parent
nor siblings; the elements at the lowest level have no children.

(ii) Each element possesses a certain degree of weakness or fatigue.
An element fails when its weakness exceeds a certain threshold.

(iii) The time is discrete: n=0, 1,... . The state of an element e at an
epoch n is defined by two Boolean functions, se(n) and le(n). At each epoch
a given element may be either intact, se(n)=0, or failed, se(n)=1, and
either unloaded, le(n)=0, or loaded, le(n)=1.

(iv) An element may switch from one state (se, le) to another under
an impact from its nearest neighbors (Fig. 1(b)).

(v) At the start, n=0, all elements are in the state (0, 0), intact and
unloaded. Most of the changes in the state of an element occur in the
following cycle:

... Q (0, 0) Q (0, 1) Q (1, 1) Q (1, 0) Q (0, 0) Q ...

(vi) All the interactions take a nonzero time. We model this by
introducing four basic time delays: DL, between an element being impacted
by the load and switching to the loaded state; DF, between the exceeding
the weakness threshold and switching to the failed state; DD, between
failure and switching to the unloaded state; and DH, between establishing
the healing conditions and switching to the intact (healed) state. In each
specific case a delay is determined as described in Sections 2.2 and 2.3
below, depending on the impact of the nearest neighbors of an element.

2.2. Load Switching

The top element of the system is loaded by external forces. The load is
transferred down the hierarchy, so that an element on all other levels may
receive the load only from its parent and siblings. Each element may trans-
fer the load only to its siblings and children. The load dissipates at the
lowest level exclusively. This is reminiscent of 3-D turbulence, where energy
enters the system only at the largest scale, is redistributed across all scales,
and is finally dissipated at the shortest scales. (49, 50)

The unloaded top element becomes loaded, (0, 0) Q (0, 1), after it
remains intact for the time DL. The top element becomes unloaded,
(1, 1) Q (1, 0), with the time delay DD after failure.

Load switching for any other element depends on the impact from its
neighbors. The total impact Ie(n) on an element e at epoch n is defined by

Ie(n)=lp − le+o C
i

(li − le). (1)
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Here the summation is taken over the indices i of the element’s siblings,
while the index p refers to its parent, and o [ 1 is a weighting coefficient.

When the impact Ie becomes nonzero at epoch n, the load is switched
after the delay

D(n)=[DL/|Ie(n)|], (2)

where [x] is the integer part of x. The type of switching—loading or
unloading—is determined by the sign of the impact (1). Load switching
does occur even if the impact becomes zero during the delay D(n).

At each epoch nj, at which the element e, its parent or a sibling switch
their load, we define the corresponding epoch N (l)

e (nj)=nj+D(nj) of pos-
sible load switching, with D(nj) given by (2). The load on e actually
switches at the earliest one of the epochs N (l)

e .
Unloading takes place with the fixed delay DD after a failure.

2.3. Failures and Healing

An element is weakened by the failure of its neighbors. The weakness
We of element e at epoch n is defined as follows:

We(n)=cFc(n)+(1 − c) Fs(n)+pFp(n). (3)

Here Fc(n) and Fs(n) are the numbers of failed children and siblings of the
element e respectively. The Boolean function Fp(n) indicates the weakening
that takes place during DD time units after the parent’s failure. Note that
during this time associated in observations with generation of aftershocks
the weakness is transferred down the hierarchy. The coefficients 0 [ c [ 1,
p \ 0 determine the impact of a neighbor’s failure on e.

An intact element e fails when (i) it is loaded, le(n)=1, and (ii) its
weakness We(n) exceeds a certain threshold W0. For failure to occur, these
conditions have to hold during the time delay

D(n)=[DF exp(W0 − We(n))]. (4)

At each epoch nj, at which at least one of the element’s nearest neigh-
bors switches its state, we determine the corresponding epoch N (s)

e (nj)=
nj+D(nj) of state switching, where D(nj) is given by (4). The actual failure
occurs at the earliest one of the epochs N (s)

e .
After its failure and subsequent unloading, an element starts to heal.

It becomes intact when at least two of its children remain intact for the
time DH, independently of the element’s load.
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2.4. Triggering of Inverse Cascades

In our model, an inverse cascade of failures can only be triggered on
the lowest level. For each element on that level we generate the number Ue

of its broken children by a random process. The physical rationale is to
simulate, in an otherwise deterministic model with a finite (and relatively
small) number of levels, the effects of the lower levels in an infinite
hierarchy.

Specifically, Ue(n) is defined as a random walk with integer values
from 0 to 3; Ue(0)=0. It changes its value at the epochs of a Poisson
process with intensity l. An increment +1 or − 1 appears if the element is
loaded or unloaded, respectively. The value of Ue does not change when
Ue=0 and the increment is − 1 or when Ue=3 and the increment is +1.

While random initial states in BDE modeling were considered in
ref. 18 and periodic forcing in ref. 7, the use of random forcing here is new,
to the best of our knowledge. It induces model behavior that is statistically
stationary or cyclo-stationary, rather than simply periodic.

2.5. Conservation Law and Model Parameters

Our BDE model is dissipative (6) if we associate the loading with an
energy influx. The energy dissipates only at the lowest level, where it is
transferred out of the model. In any part of the model that does not
include its lowest level energy conservation holds, after averaging over suf-
ficiently large time intervals. On small intervals it may not hold due to the
discrete time delays involved in energy transfer.

The model has the following parameters: the time delays DL, DD, DF,
and DH (Section 2.1); the intensity l of the initial fracturing (Section 2.4);
the dimensionless parameters o, c and p that determine the neighbors’
impact on an element, cf. Eqs. (1)–(3); and the weakness threshold W0

(Section 2.3). Time is normalized by DF, and the coefficients c and p by W0,
so that W0=1. Accordingly, the model has seven independent parameters:
DL, DD, DH, l, o, c, and p. We kept the last three parameters fixed (see
Table I), as well as the ratio DH/DD=2, and concentrated on how changes
in DL, DH, and l affect the model’s behavior.

2.6. Earthquake Sequence

A model earthquake is the failure of a system’s element. The sequence
of synthetic earthquakes is represented by a catalog, similar to those
produced for the observed earthquakes:

C={(tk, mk, hk) : k=1, 2,..., K; tk [ tk+1}; (5)
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Table I. Fixed Values of the Model’s Parameters or Their Range of Variation

l DL DH DD DF o c p L

From 10−7 1 1
DH/2 103 1/3 2/3 3 6

To 10−2 106 106

here tk is the time of failure; mk is the level of the broken element counted
from the bottom of the hierarchy; and hk is the position of an element
within the model ternary structure (see Fig. 1(a)).

3. MULTIPLE SEISMIC REGIMES

A long-term pattern of seismicity within a given region is usually
called a seismic regime. It is characterized by the frequency and the irregu-
larity of the strong earthquakes’ occurrence; the size distribution of
earthquakes; the variability of this distribution with time; and the largest
magnitude recorded during a few decades.

In the Earth, one seismic regime may switch to another in the same
region; (51, 52) the range of possible regimes is determined by the region’s
neotectonics. An essential characteristic of a seismic regime is its sequence
of seismic cycles. Each cycle consists of three consecutive phases: (28)

‘‘preseismic’’ rise of activity that culminates in one or several major
earthquakes; ‘‘postseismic,’’ gradual decline of activity; and relatively low
activity that eventually returns to another rise. Such cycles take place on
different time and space scales. The time intervals between consecutive
major earthquakes, timing of a particular phase within each cycle, and the
maximal magnitude vary strongly from cycle to cycle.

3.1. Regime Description

We simulated a number of earthquake sequences, each spanning the
time interval I=[0, 2 · 106]; the values of the parameters were varied from
one simulation to another, as shown in Table I. The synthetic sequences
can be divided into three seismic regimes, illustrated in Fig. 3.

Regime H: High and nearly periodic seismicity (top panel). The frac-
tures within each cycle reach the top level, m=L, with L=6. The sequence
is approximately periodic, in the statistical sense of cyclo-stationarity. (53)
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Fig. 3. Three seismic regimes: sample of earthquake sequences. Top panel—regime H,
DH=0.5 · 104; middle panel—regime I, DH=103; bottom panel—regime L, DH=0.5 · 103. The
rest of the model parameters are fixed: DL=0.5 · 104, DF=103, l=0.2 · 10−4, o=1/3, c=2/3,
and p=3.

Regime I: Intermittent seismicity (middle panel). The seismicity
reaches the top level for some but not all cycles.

Regime L: Medium or low seismicity (lower panel). No cycle reaches
the top level and seismic activity is much more constant at a low or
medium level, without the long quiescent intervals present in Regimes H
and I.

3.1.1. Density of Failed Elements

To depict the difference between the regimes described above we show
in Fig. 4 the average density r(n) of the elements that are in a failed state
at epoch n:

r(n)=[n1(n)+ · · · +nm(n)]/L. (6)

Here ni(n) is the fraction of failed elements at the ith level of the hierarchy
at the epoch n, L is the depth of the tree. The panels correspond to the
three synthetic sequences shown in Fig. 3. The density r exhibits the
transition from near-periodicity (panel a) to intermittent (panel b) and
eventually to low-level noisy behavior (panel c) that appears in Fig. 3.
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Fig. 4. Three seismic regimes: internal dynamics of the system. The panels show the density
r(n) of broken elements in the system, as defined by Eq. (6); they correspond to the synthetic
sequences shown in Fig. 3. Top panel—Regime H; middle panel—Regime I; and bottom
panel—regime L.

3.1.2. Gutenberg-Richter (GR) Relation
Figure 5 displays the magnitude distribution, otherwise known as GR

relation, of model earthquakes for the three sequences shown in Fig. 3;
it plots the number N=N(m) of earthquakes with magnitude m.

Most frequently mentioned in the literature is the linear form of the
GR relation, log N(m)=a − bm. This form corresponds to a power law for
the released energy distribution and is attributed to scale invariance of the
underlying processes. (29, 50, 54–57) Both in real and modeled seismicity the
linear relation is a crude approximation, valid only after considerable
averaging in space in time, and in a limited magnitude range.

In our model, the GR relation is quite distinct from one regime to
another. For regime H (panel a), the relation is almost perfectly linear over
all possible magnitudes, with b=0.48. For regimes I and L (panels b and c,
respectively), the GR relation is increasingly convex and thus cannot be
characterized well by a single slope b. A straight line with the slope b=0.48
is shown in panels (b) and (c) for comparison. For regime H, the GR
relation is stationary, while for the other two it is changing in time (not
shown). Figure 5 illustrates deviation from scale invariance—the most
important feature of non-linear systems with multilevel hierarchy. In
regime H the whole system is periodically crashed (cf. Fig. 4a) which leads
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Fig. 5. Three seismic regimes: magnitude distributions (Gutenberg-Richter relation). The
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comparison with Regime H that fits well this approximation.

to the linear GR relation with slope determined by the model’s ternary struc-
ture. In regimes I and L at each particular epoch a part of the system remains
intact. The cascade of fracturing does not always reach the top level and this
leads to the downward bend of GR relation at large magnitudes. The failure of
the top element is not followed by the crash of the whole system (cf. Fig. 4b, c)
and this leads to the downward bend at small magnitudes.

3.2. Regime Diagram

The location of the regimes in the plane of the two key parameters
(DL, DH) is shown in Fig. 6. The range of DL and DH values is shown in the
figure, while the rest of the parameters are fixed at the values given in the
caption to Fig. 3.
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Fig. 6. Regime diagram in the (DL, DH) plane of the loading and healing delays. Stars cor-
respond to the sequences shown in Fig. 3. The points (a)–(f) correspond to the sequences
shown in Fig. 10.
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Regime H occurs predominantly for high values of DH, that is for low
healing rates. Regime L occurs for low DH and high DL, i.e., for high
healing rates and very slow loading. Regime I occurs for low DH and low DL,
when both the healing and loading rates are high. Its domain also extends
toward the upper right edge of the figure and fades away as it approaches
the triple point at which all three regimes meet.

The three sequences shown in Fig. 3 correspond to the three stars in
Fig. 6 at fixed DL=0.5 · 104 and decreasing DH. Next, we analyze what
happens to the system when it is driven across regime boundaries.

3.2.1. Irregularity of Energy Release

One of the major differences between regimes resides in the temporal
irregularity of seismic energy release. We define here a measure G of that
irregularity; this measure will be then used to better illustrate the transi-
tions between regimes in parameter space.

(i) First, define a measure S(I) of seismic activity within the time
interval I as

S(I)=
1
n

C
n

i=1
10Bmi, B=log10 3. (7)

The summation in (7) is taken over all events, labeled by i, within the time
interval I; mi is the magnitude of the ith event. The value of B equalizes,
on average, the contribution of earthquakes with different magnitudes,
that is from different levels of the hierarchy. In observed seismicity, S(I) has a
transparent physical meaning: given an appropriate choice of B, it estimates
the total area of the faults unlocked by the earthquakes during I. (58) This
measure is successfully used in several earthquake prediction algorithms. (31)

(ii) Consider a subdivision of the interval I into a set of nono-
verlapping intervals of equal length E > 0. For simplicity we choose E such
that |I|=ENI, where | · | denotes the length of an interval and NI is an
integer. Therefore, we have the following representation:

I=0
NI

j=1
Ij, |Ik |=E, k=1,..., NI, Ij 5 Ij=”, j ] k. (8)

(iii) For each n=1,..., NI we choose an n-subset W(n)={1n
k=1 Iik

}
that maximizes the value of the accumulated S:

S(W(n)) — Sg(n)= max
(i1,..., in)

3S 10
k

Iik
24, (9)

where the maximum is taken over all n-subsets of the covering set (8).
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(iv) Introducing the notations

S̄(n)=Sg(n)/S(I), y(n)=nE/|I|, (10)

we finally define the measure of clustering within the interval I as

G(I)= max
n=1,..., NI

{S̄(n) − y(n)}. (11)

Figure 7 illustrates this definition by displaying the curves S̄ − y vs. y

for the three synthetic sequences shown in Fig. 3; the maximum of each
curve equals the corresponding value of G. The more clustered the
sequence, the more convex is the corresponding curve, and the larger the
corresponding value of G. For appropriate E, a marked Poisson process
with independent marks has S̄ — y, and thus G=0, which depicts the
absence of clustering.

3.2.2. Regime Transitions

Figure 8 illustrates the transition between regimes in the parameter
plane (DL, DH). Panel (a) shows a rectangular trajectory in this plane that
passes through all three regimes and touches the triple point. We single out
30 points along this trajectory; they are indicated by small circles in the
figure. The three pairs of points that correspond to the transitions between
regimes are distinguished by larger circles and marked in addition by
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shown in panel (a). The transition between points (A) and (B), i.e., between regimes H and L,
is quite sharp. See details in the text.

letters, for example (A) and (B) mark the transition from Regime H to
Regime L.

We estimate the clustering G(I), with I=[0, 2 · 106], for the synthetic
sequences that correspond to the 30 marked points along the trajectory in
Figs. 8(a) and 8(b) shows the corresponding values of G. These values drop
dramaticaly, from 0.8 to 0.18, between points (A) and (B): this means
that the energy release switches from highly irregular to almost uniform
between Regimes H and L.
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The transitions between the other pairs of regimes are much smoother.
The clustering drops further, from G=0.18 to G % 0.1, and then remains at
the latter low level within Regime L. It increases gradually, albeit not
monotonically, from 0.1 to 0.8 between points (C) and (A), on its way
through regimes I and H. The increase of DL along the right side of the
rectangular trajectory corresponds to a fixed level of clustering, G % 0.8.

The transition between regimes is illustrated further in Fig. 9. Each
panel shows a fragment of the six synthetic sequences that correspond to
the points (A)–(F) in Fig. 8(a). The sharp difference in the character of the
energy release at the transition between Regimes H (point (A)) and
L (point (B)) is clear. The other two transitions, from (C) to (D) and (E)
to (F), are much smoother. Still, they highlight the intermittent character
of Regime I, to which points (D) and (E) belong.

3.3. Intermittent Regime

We illustrate here in greater detail Regime I. Figure 10 shows the
density of failures r(n), cf. Eq. (6), for six synthetic sequences that corre-
spond to points (a)–(f) in the plane (DL, DH) of Fig. 6. The rest of the
parameters are fixed at the values given in the caption. The first two
sequences, (a) and (b), are taken from Regime H; the other four, (c)–(f),
are from Regime I.

The discussion in this subsection is based, in addition to Fig. 10, on
certain details of the actual catalog, which is not shown; its relation to
the density r(n) was illustrated by comparing Figs. 3 and 4 above. The
sequence in panel (a) consists of nearly periodic cycles, all of which end
with an event of magnitude m=6. The cycles in panel (b) are less regularly
spaced and vary somewhat in shape, since this sequence lies in the near
vicinity of the boundary between regimes H and I (see Fig. 6).

Panel (c) shows well-developed intermittency. Three types of behavior
are present: (i) nearly periodic cycles that end with events of magnitude
m=6 and exhibit very little intercycle activity (see for instance the time
interval 4.8 · 105 [ t [ 5.0 · 105); (ii) nearly periodic cycles that end with
events of lower magnitudes and are separated by varying intercycle inter-
vals (e.g., 4.3 · 105 [ t [ 4.8 · 105); and (iii) cycles that always end with
events of magnitude m=6 but display very strong intercycle activity of
variable duration (e.g., 3.5 · 105 [ t [ 4.0 · 105). The timing and duration of
these three types of behavior vary randomly with time.

Panel (d) illustrates a case when cycles culminating by a strong
earthquake with m=6 occur only very rarely. Most of the cycles end with
lower magnitudes. This is due to the fact that we approach the domain of
Regime L. Panel (e) represents a sequence with very long intervals of nearly

830 Zaliapin et al.



1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62

x 10 6

0
1
2
3
4
5
6
7

1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62

x 10 6

0
1
2
3
4
5
6
7

Time

8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

x 10
5

0
1
2
3
4
5
6
7

8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

x 10
5

0
1
2
3
4
5
6
7

Time

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10 6

0
1
2
3
4
5
6
7

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10 6

0
1
2
3
4
5
6
7

Time

A

B

C

D

E

F
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Fig. 10. Different types of intermittent behavior. Each panel shows the density of fractured
elements r(n) for the corresponding synthetic sequences, over the time interval
[3.5 · 105 5 · 105]. Differerent panels correspond to different values of the parameters DL and DH,
as indicated in Fig. 6, while the rest of the parameters are fixed: c=2/3, p=3, o=1/3,
l=0.2 · 10−4, DF=103; (a) DL=102, DH=103; (b) DL=103, DH=7 · 102; (c) DL=5 · 102,
DH=2 · 102; (d) DL=103, DH=2 · 102; (e) DL=5 · 102, DH=102; and (f) DL=10, DH=102.

periodic cycles that differ in mean period and end with different magnitu-
des. Note that the three sequences shown in panels (c), (d) and (e) are close
neighbors in parameter space (see Fig. 6). Nevertheless, they demonstrate a
rich variety of long-term seismicity outlooks. This is always the case near a
triple point, where any physical system is very sensitive to small changes in
parameter values.

Panel (f) shows one of the most interesting situations. All cycles are
periodic and end with events of magnitude m=6. But the length of the
cycles themselves, as well as that of intercycle intervals, are quite irregular.
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4. PHYSICS OF REGIME SWITCHING

We discuss qualitatively in this section the mechanisms that determine
the realization of a particular seismic regime in the present model.

4.1. The Role of Memory

Memory effects play a key role in determining the occurrence of one
regime or another. These effects can be measured by the decrease of the
correlation between the states (s, l) of the system at epochs n − k and n. If
this correlation decays significantly over time intervals of a length k that is
comparable with the characteristic duration of a seismic cycle, we speak
about short memory. If the correlation decays over times much longer that
this duration, we speak about long memory. Long memory leads to the
realization of the intermittent regime I. Short memory leads to one of the
regimes H or L, depending on loading and healing rates.

4.2. Dependence on Parameters

The model’s effective memory, and therefore the resulting regime, is
determined by the interplay of parameters. Generally, the changes in the
system become faster, and memory shorter, when the initial-fracturing
parameter l (see Section 2.4) increases—so the inverse cascades become
more intense—and when either one of the four time delays in Table I
decreases. This situation will favor, therefore, the appearance of regimes H
or L.

On the other hand, the relative magnitude of the different delays is
crucial. For instance, the relation DD+DH ± DL means that the minimal
healing delay is much larger than the loading delay; this favors the realiza-
tion of Regime H. The opposite relation, DD+DH ° DL, leads to a
decrease of the maximal magnitude of earthquakes possible, and hence to
the realization of Regime L.

4.3. Healing and Loading

Healing and loading clearly play an important role in the formation of
seismic regimes. Seismic activity increases with the loading rate, which is
inversely proportional to DL.
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Without healing (DH=.) the whole system fails in finite time and
does not recover at all, as it happens in the case of the fiber-bundle
model. (59) When healing is present but slow, DH ± 1, the system can
recover between consecutive total failures and thus give rise to seismic
cycles, albeit very long ones. Finally, with fast healing, low-level failures
heal so quickly that they can’t merge to generate the larger ones. As a
result, the inverse cascade never reaches the top level.

The role of each single parameter in establishing a regime is therewith
transparent. Note, however, that the realization of a seismic sequence
depends on the interplay of parameters: no single parameter alone controls
the behavior of the system.

5. DISCUSSION

Our analyses demonstrate that the BDEs framework may serve as the
‘‘missing link’’ for understanding how the elementary interactions within
the system determine its global behavior. The BDE model of colliding cas-
cades reproduces the broad spectrum of observed seismic regimes, includ-
ing their intermittency. Our results provide a basis for the study of the next
problem: predicting regime switches. The memory of the system may be a
useful control parameter in solving this problem.

Regime switching is well known and intensively studied in climate
dynamics; (60–64) similar phenomena arise in percolation theory, (65) as well as
in its application to forest fire models. (66) The existence of an infinite per-
colation cluster is analogous to rupture of the top element in the system
considered here. In that way, regime switching could be akin to phase
transitions studied in statistical physics. A meaningful connection, if any, is
yet to be established, however.

Our regimes H, I and L are dynamical counterparts of the three
regimes found analytically by Blanter and Shnirman (48) in a static hierar-
chical model of defect development that had only an inverse cascade of
fracturing. The results presented here are a natural extension of their ana-
lytic ones to the more realistic case of colliding cascades of loading and
failures.
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